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Abstract. The main goal of the paper is to investigate some features of polynomials and
hyperdeterminants over noncommutative rings, namely over quaternion skew-field and division
rings with involution; these results generalized well-known results of A. Cayley, I. Gelfand, M.
Kapranov, A. Zelevinsky, X. Zhao, Y. Zhang and others. Main results are: the estimation of
number of roots of canonical polynomials over quaternions — they are infinite unlike number of
roots of polynomials over real field and generalization of results of X. Zhao, Y. Zhang on
resultants and its features of polynomials over quaternions to polynomials over division rings
with involution (Theorems 2-5). Also, in last paragraph of the paper is hypothesized what form

should it be the cubical hyperdeterminant of order three over division ring with involution.
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Introduction. The estimating the number of roots of polynomials, the notions of resultant
and determinant are closely related to each other. This connection is also preserved in the
generalizations of these studies and concepts, which is clearly seen in this work, and therefore
these tasks are brought together here.

The work consists of three paragraphs. In the first it is present the theorem of N.
Topuridze about the structure of roots of canonical polynomials over quaternions (Theorem 1),
namely it is shown, that the zero-set of a canonical quaternion polynomial consists of t isolated
points and s two-dimensional spheres, where t + 2s does not exceed the algebraic degree of a

given polynomial. X. Zhao, Y. Zhang [1] generalized resultant and Cramer law for quaternions;
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in the second paragraph we generalize these results then the ground ring is a ring with division
and involution. In the third paragraph based on results of A. Cayley [2], I. Gelfand, M.
Kapranov, A. Zelevinsky [3] and others we hypothesize what form should it be the cubical
hyperdeterminant of order three over division rings with involution.

1. Quaternion polynomials. Let H be the quaternion skew-field, i.e. a four-dimensional
vector space R* over the field of real numbers R:

H ={(a,b,c,d)| a,b,c,d € R}.
We denote the generators (unit vectors) by
1=(1,0,0,0), i =(0,1,0,0), j = (0,0,1,0), k = (0,0,0,1).

Then any quaternion can be written in the form a + bi + ¢j + dk, where a,b,c,d € R.
The unit vectors 1, j, and k are sometimes called imaginary units. The multiplication in H is
defined by the famous rules found by R. Hamilton:

ij=—ji=k,jk=—-kj=1iki=—-ik=]j. (1)

Quaternions form a system with division, i.e., the equations

aq=pf, qa=p,
where ¢ is an unknown quaternion, possess the solutions q; = a~!f and ¢, = fa”?,
respectively. Moreover, the quaternion norm is multiplicative, i.e., Nr(af) = Nr(a)Nr(B),
where
Nr(a) = a? + b? + c? + d2.

Every quaternion satisfies a polynomial equation with real coefficients. More precisely,
it can be verified directly that the quaternion @ = a + bi + c¢j + dk satisfies the quadratic
equation with real coefficients:

q? —2aq +a®> + b? + ¢ + d? = q*> — 2Re(a)q + Nr(a) = 0.
The polynomial

fa(@) = q* — 2Re(a)q + Nr(a) 2
is called the characteristic polynomial of the quaternion a and is an irreducible quadratic
trinomial from the ring of polynomials R[q]. The converse statement is also valid: if
9(q) = q% + 2tq + s is a quadratic trinomial with a negative discriminant, then any quaternion
B=a +bi+c'j+dk, for which a’ = Re(f) = —t,and Nr(B) =s, is a root of the
polynomial g(q).

Thus there are infinitely many quaternions that are roots of such a quadratic trinomial,
and it will be shown below that the roots of polynomial (2) form a two-dimensional sphere S2.

Thus, unlike the well-known situation in a field, where an nth degree polynomial may have not
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more than n roots in virtue of the Bezout theorem, a polynomial over H may have infinitely
many roots.
Let us consider the polynomial of one variable with coefficients from H
P(q) = Xm=0$mq™, where §;eH and &, = 1
Theorem 1. The zero-set of a canonical quaternion polynomial
P(@) = Xh=oémq™ @i € Hi=0,n a, =1
consists of t isolated points and s < nT_t two-dimensional spheres, i.e., the inequality t + 25 <

n is valid.

As is shown, the set of roots of a canonical polynomial always consists of a finite number
of points and two-dimensional spheres.

2. Resultants over noncommutative rings. Let K be an associative division ring with
involution @ — @, @ = a, a € K. Quaternions are the example of such rings.

Let K[x] be canonical polynomials (i.e. the coefficients and variables are separated and
the coefficients are at the beginning) over K:

f(x) = apx™ + a;x™ 1 + -+ a,.
Let gcrd(f, g) denotes the greatest right common divisor of polynomials f, g € K[x].
Sylvester matrix Syl(f, g) [1] of two canonical polynomials
fx) = apx™+ ax™ 4+ -+ ap, g(x) = box™ + byx" 1 + -+ b,

is the matrix

A, by
Am—1 Aam bp—1 by
Qi
Ay —1 bO : bn
agp bo
ap
ao bo

with n columns of a;-s and m columns of b;-s, and all entries outside the two “parallelograms”
are zero. The double determinant [4] of the transpose of Sylvester matrix is called [1] the
resultant of f and g, denoted by res(f, g) = ddet(Syl(f,g)T), where Syl(f,g)T is the
transpose of the Sylvester matrix Syl(f, g). Recall that the double determinant of a matrix A
over ring K is the raw determinant [4] rdet;(A*A) (here A* denotes the involutive and transpose
matrix of A) which does not depends from the choose of the raw (column) i because A*A is

Hermitian.
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Similarly as in [1] we prove theorems 1- 4:

Theorem 1. (Cramer’s Rule). Let xA = y be a left system of linear equation over K with
coefficient matrix A, constant row y = (Y1, Vo, ---, Yn) 0f elements from over K, and unknowns
x = (xq, Xy, ..., Xp). If double determinant ddet(A) # 0, then the system has a unique solution
in K given by

rdet;((447)i(y4")

.= <i <
Xi ddet(A) , I=sis=n

where (AA™); (YA*) is the matrix obtained from AA* by replacing the i-th row by the row vector
yA*.

Theorem 2. Let K be an associative division ring with involution. Suppose f,g € K|[x]
are nonzero. Then gcrd(f,g) = 1 ifand only if res(f, g) # 0.

Theorem 3. Let K be an associative division ring with involution. Suppose f,g € K|[x]
and deg f > 0, deg g > 0. Then there exist polynomials p,q € K[x] such that pf + qg =

res(f, g). Furthermore the coefficients of p and q are integer polynomials in the coefficients

of fand g.
Theorem 4. Let 0 # f € K[x]. Then f has a repeated right root if and only if
res(f,f') = 0.

From these theorems follows

Theorem 5. Let K be an associative division ring with involution. Suppose f,g € K|[x]
anddeg f > 0, deg g > 0. Then f, g have common roots if and only if res(f,g) = 0.

Indeed if f,g € K[x], deg f >0, deg g >0 and f,g have common root a then
res(f,g) = 0. From Theorem 3 follows that

pf(a) +qg(a) = 0 =res(f, g).

Conversely if f,g € K[x], deg f >0, deg g > 0 and res(f,g) = 0, then f, g have
common root. Indeed since res(f,g) = 0, by Theorem 2 gcrd(f,g) = d(x), degd(x) > 1
and

fO) = fi()d (), glx) = g:(x)d(x).

If « is a root of d(x), then it is clear that f(a) = g(a) = 0, i.e. f(x) and g(x) have
common root.

3. Noncommutative hyperdeterminants. The determinant of a matrix one can extend by
two ways to hyperdeterminants of higher order: a) by extending the usual expression of an n
% n matrix determinant, which we will call the combinatorial hyperdeterminant, b) by using
the characterization that a matrix has det4 = 0 if and only if 4x = 0 has nonzero solutions,
which we will call the geometric hyperdeterminant. This approaches were proposed by Cayley

[2], he also gave the explicit expression of a 2 x 2 x 2 geometric hyperdeterminant.
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The combinatorial hyperdeterminant of a cubical A = (a;,;, ;,) € F™*" d-hypermat-

rix is
det(4) = %an,..,ndesn sgnmy ...sgnig [1i21 Qn iy mg)-

Particulary, for odd order d, the combinatorial hyperdeterminant of a cubical d-
hypermatrix is identically zero and for even order d, the combinatorial hyperdeterminant of a
cubical d-hypermatrix

det(A) = X, . nges, SGNT2 - 7a) [Tie1 Qi (i), a00)-

Obtaining an explicit formula for the hyperdeterminant even for commutative rings is not
an easy task. See, for example, [5] which shows that the 2x2x2x2 hyperdeterminant consists of
2,894,276 terms. We think that the new formula proposed in [6] (and a method to obtain) the
2x2x2 hyperdeterminant for commutative rings might be extendable to hyperdeterminants of
noncommutative rings.

As is known [2] in the commutative case the discriminant of system of equations

Aoo0XoYo + Ao10X0Y1 + A100X1 Y0 + A110%1Y1 = 0
Apo1X0Yo + Aoo1X0Y1 + Apo1X1Yo + Ago1X1Y1 =0
Ao00X0Yo + Aoo1X0Y1 + A100X1Y0 + A101%1Y1 = 0 3)
Ap10%0Yo + Qp11X0Y1 + A110X1Y0 + A111%1Y1 = 0
Aoo0YoZo T Apo1Y0oZ1 + Ap10Y1Z0 T Ap11Y1Z21 = 0
A100Y0Zo + A100Y0Z1 + A100X1Y0 + A111%1Y1 = 0
is a 2x2x2 geometric hyperdeterminant
_a(%ooa%n_a%ooa(z)n_a(2)10a%01_a(2)01a%1
—4a0000110%101%11 — 400001102101 %011
+2a0000100%0112111 T 20000%0102101a111 4)
+2a000@00121102111 T 28100%010%101%011

+2a100001%110%11 T 2@010Q001%110%101

of the cubical matrix

Mae T 5777 Ao
}/ [ // !
|
— el e - -
:aOOO | —r’aom |
\ [ b
] [ i !
I t 1
1 F !
] /LQE-_-—T.—J%M
1 it
4 rd
e - 1Y
Qp10 Qp11
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This means that (3) has nontrivial solutions if and only if (4) is zero. We can write the

geometric hyperdeterminant of A = (A4;|4;) = (a;j) € C¥**** (where A; and A, slices of 4)

also as [4]

1
Detz’z‘z = Z(det(Al + Az) - det(Al - Az))z - 4‘det (Al)det (Az)

2
_1 det (aooo a001)+(a100 a110) _ det (aooo a001)_(a100 a110)
4 Qp10 do11 A101 4111 Ao10 Qdo11 A101 4111
Qpoo a010) de (‘1100 ‘1110)
Qoo1  Ao11 A0 A111/°

—4det (

The geometric hyperdeterminant of A = (a;j;) € C****3 is [4]
Aooo  Qoo1  doo2 Q100 Q101 Q102
Det,,3 = det (amo 101 ‘1102) det <a010 Ap11 ao12>
Qo10 Qo11  Qo12 110 A111 A112
Aooo  do01  Qo02 Qooo Qoo1 ooz
- det (amo aj01 ‘1102) det (%10 Ap11 a012>.
Q110 A111 Q112 A110 d111 Q112
The condition that Det, , 3 = 0 is equivalent to statement, that the system
Qo00X0Yo + Ao10%0Y1 + A100X1 Y0 + A110%1Y1 = 0,
Ao01X0Y0 + Qo11%0Y1 + A101X1 Y0 + A111%1Y1 = 0,
A02X0Y0 + Qo12X0Y1 + A102X1 Y0 + A112%1Y1 = 0,
Aoo0X0Zo T Ago1X0Z1 F Ago2XoZ2 + A100X1Z0 + A101X12Z1 + A102%122 = 0,
Ao10X0Zo T Ap11X0Z1 F Ag12X0Z2 + A110X1Z0 + A111X121 + Q112%12, = 0,
Ap00YoZo T Ao11Y0Z1 + Q012Y0Z2 + Qo10Y1Z0 + Ao11Y121 + G12Y122 = 0,
a100Y0Z0 + A101Y0Z1 + A102Y022 + A110Y1Z0 + 111121 + Q112Y122 = 0.
Our goal is to formulate the hypothesis, which generalizes the notion of cubical geometric
3-hyperdeterminants for associative division rings with involution.

Suppose (4) is the canonical equations over the associative division ring with involution

K and

B0 = (s asor)” B1=(agns ans)1=(1 o)

Let A denotes the matrix [6]
0 0 0 —1 "
0 ()) 1 0 ) Bo
0 1 0 0 T
~1 0 ) 0 0 ) B

By B, 0

Now we can formulate our hypothesis:
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Hypothesis. The discriminant of the system of equations (4) is the double determinant of

the matrix A. More precisely (4) has nontrivial solution if and only if the double determinant of

the matrix 4 is zero.

Let us remark that in suitable proposition from [6] is considered ordinary determinant

instead of double determinant of noncommutative rings.
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