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Abstract. The work considers a non-self-similar problem about the central explosion of
nonhomogeneous gas body (star) bordering vacuum which is in equilibrium in its own
gravitational field. To solve the problem, the asymptotic method of thin impact layer has been
used. The solution of the problem in the vicinity behind the shock wave (the destruction surface
of the first kind) is sought in the form of a singular asymptotic decomposition by a small
parameter. Analytically, the main (zero) approximation for the law of motion and the
thermodynamic characteristics of the medium has been accurately found. The Cauchy problem
for zero approximation of the law of motion of the shock has been solved exactly, in the form
of elliptic integrals of the first and second general ones. The relevant asymptotics have been

found.

Keywords: Nonhomogeneous star, gravitational field, explosion, shock wave, singular

decomposition.

Introduction. Mathematical modeling of explosive processes in gravitational gaseous
bodies is one of the actual problems in astrophysics [1-10].

According to the existing understanding, the light elements contained in the outer layers
of the stars can detonate. Detonation is initiated during gravitational collapse of a gas nucleus
accompanied by neutron radiation. The main focus is on the physical processes associated with
thermonuclear reactions and the propagation of radiation, and less attention is paid to the

dynamics of gases, on the whole [4].
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Due to the complexity of the problem, numerical modeling of these processes has been widely
developed [5].

In modern astrophysics the catastrophic processes of stellar explosion with subsequent
formation of neutron stars and collapsing bodies - black holes - are of special interest. Novae
and supernovae explosions are the non-stationary motions of large masses of gas with sharply
increasing radiation energy.

In order to solve number of problems of astrophysics it is necessary to study the dynamics
of gaseous bodies interacting with the gravitational field. In this regard, the problems of the
process of propagation of explosive detonation waves in the gravitational field are worth noting.

It is clear that the study of astrophysical phenomena should be based on setting and
solution of number of dynamic problems of gas movement considered as mathematical models
with important features of stellar movement and evolution.

For theoretical understanding of such grand cosmic catastrophes, application of the
methods of dimension theory to the problems of gas dynamics allowed L. Sedov to propose and
solve number of classical problems from the theory of point explosion. Such problems are
connected with the movement of shock waves and free surfaces. These works laid the
groundwork for the development of the great direction of modern gas dynamics - the Big
Explosion theory, the problems of which usually require application of complex computational
methods [1].

Basically, the essential and practically important parameter of these problems is the law
of motion of the shock wave generated by explosion, but in terms of differential equations the
classical formulation of the problem usually involves the predetermination of the properties of
the whole local process. On the other hand, description of the explosion phenomena in an ideal
mathematical model requires a certain accuracy of calculation. In this regard, obviously it
would be important to approximately define the sought unit of the integral characteristic by
means of estimation of the systems of inequalities allowing us to obtain simple two-sided
estimations for it. In many cases these estimations are sufficient to solve it [6].

Very often small reduction of exact estimations allows us to fully express the answer in
elementary functions. The conclusion and solution of necessary inequalities represent the
development of the method of integral relation, well-known in hydrodynamics [1].

Based on the equations of the motion of medium, the integral equations of energy and
Lagrange-Jacobi for one-dimensional spherical-symmetric flows of perfect gravitational gas T.
Chilachava [6] solved a system of integro-differential inequalities for the law of motion of the
detonation wave and the moment of inertia of the disturbed area. For justification of the solution

of initial inequalities and their simplification in the case of motion of detonate wave in
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practically quiet gas a system of inequalities is obtained and given in its final form using the
Helder and Jensen theorems (of inequalities). A self-similar spherically symmetric problem of
adiabatic motion of gravitating perfect gas is considered for a detonation wave occurring in case
of collapse of a nonhomogeneous gravitational gas at zero pressure or in case of imbalance.
Using the method of integrodifferential inequalities, a system is obtained that determines the
law of motion of the detonation wave, based on the known initial state of the gas.

In[11-14] T. Chilachava proposed an asymptotical method for the gravitating perfect gas,

;21 (the asymptotic thin-shock-layer method).
2

which is connected with small parameter € =

By means of this method the non-similar problem of propagation of detonation wave exploding
in the nucleus balanced in its own gravitational field is found. The adiabatic expansion of a
gaseous body into a vacuum is described.

The problem of stationary solid-state rotation with a constant angular speed of a
homogeneous three-axis gas ellipsoid being in its own gravitational field bounded by a vacuum
is discussed in [15, 16].

As is well known, in the equilibrium theory of ellipsoidal figures, Jacob's three-axial
steady-state rotational half-axes as well as the angular speed of rotation must satisfy some
additional relations. Partial derivative equations of gravitational gas motion (vector equation of
gas motion, entropy and scalar equations of continuity) are considered in both Euler (Cartesian)
and spherical coordinates suitable for solving such types of problems. An exact solution (the
law and speed of the motion of the medium and also thermodynamic characteristics of the
medium) to the problem of stationary solid-state rotation with a constant angular speed of a
homogeneous three-axis gas ellipsoid, which is in its own gravitational field and is bounded by
a vacuum (zero pressure on boundary) is found. The distribution of gravitational field potential

in a three-axis homogeneous ellipsoid satisfying Poisson’s equation is also found.

Chapter I. The system of equations and boundary conditions of spherically symmetric
motion of gravitating gas on the surface of a strong rupture

In the Lagrangian coordinates the system equations and conditions of adiabatic
spherically symmetric motion of gravitating perfect gas on the surface of a strong rupture are

given by:
or 200  km _ — (v y o , or]!
at2+47tr 6m+ = = 0, p=FG-DfmM)pY, p= [47rr 0 (1.1)

[r]? = [vM — 4nr2p]i =0, (1.2)

- (1 (ar\? P kM 2 2 _
[M (5 (E) T oon 7) ~ A vp]l =9,
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. d . : o
where 1, p, p||m, t, are the unknown functions; a—: = v is the speed of gas motion; k- gravitation

constant, and f(m) function is connected to the entropy distribution by the Lagrangian m
coordinate.

The equation of motion t in (1.1) is obtained from the equation of motion t in the Euler

coordinates

dv 10p _ 6_d>

@thor = (13)
where @ is the potential of the gravitation field defined from the equation:

AD = —4mkp. (1.4)

In Cartesian coordinates, the Laplacian is given by:

Write the Laplacian in spherical coordinates (x,y, z) = (1,0, @),

x = rsinfcos0 (r —V x*+y*+z

. _ y
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= z
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Finally, we get:

AEAEii(rzi)+ ! i(sint9%)+;az. (1.5)

r2or ar r2sinf 90 125in20 9?2

But in the case of spherically symmetric motion:
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d d

0 0p
Therefore, from (1.4), (1.5) we will have:

19 (rz a—¢) = —4mkp, (1.6)

r2or or

r
T
0P 1 c 1 T c
== —r—247tkf pzzdz+r—;,q§ = —4nkj; r_z(fo pzzdz)dr—f+cz,
0
1 = O, Cy = 0,

od  —Amk forpzzdz

ar T2

(1.7)
In the latter relation the integral
am [ pz?dz =m, (1.8)
and from (1.3) we easily get the equation of the gravitating gas motion in the form of (1.1).
Thus, r = r(m, t) is the law of motion of medium; m = M(t) - the law of motion of the
surface of strong rupture in Lagrange mass coordinate, and R = r(M(t),t) - the law of
movement of the surface of strong rupture (radius).

The integral equation of energy is given by:
t

_ p[i(erY 4 M|, 20r
T+U—kV—E+j;{M[2(at) = R] Anr atp}ldr, (1.9)

T = %fOMfzdm,= ﬁfoMgdm,V = —fOMmfm.

Chapter I1. Exact Solution to the Initial Shock Wave

Now let the exact solution to (1.1) be the initial data corresponding to a nonhomogeneous
gas nucleus bounded by a vacuum balanced in its own gravitational field, where the
gravitational constant k, the density at the center of the nucleus p, and the radius of the nucleus
are the main units of dimension.

Let the distribution of density of a nonhomogeneous gravitating gas nucleus be given by
(in non-dimensional form):

p=1-r, (2.1)

which shows that the density is maximum at the center of the nucleus, and it is zero on the
sphere (the star is bounded by the interstellar medium the density of which is
p~10"2*gr /cm/cm?® or actually it is zero).

Introduction of the density distribution (2.1) into formula (1.8) of Lagrange coordinate m

gives:
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m = 4nr3 (1 - 5). 2.2)
3 4
Because the nucleus in initial state is balanced in its gravitational field

5 =v=0. (2.3)
Introduction of (2.3), (2.2), (2.1), (1.7) into (1.3) taking into consideration that the
pressure on the sphere is zero (actually the star is bounded by a vacuum) gives the distribution

of pressure in the nucleus (in non-dimensional form):
1 7 1-r*
p=dn[(1-13) - Z(1-7r3)+| (2.4)
Thus, in the form of the initial data (initial exact solution before the shock wave), we

receive the exact solution of the system (1.1):

p=1—r,m=4nr3 G - i), (2.5)
ar
E—U—O,
— Tea_2y_ 71 _,3 -t
p—4n[6(1 r°) 36(1 re) + 16].

Chapter I11. Approximate Analytical Solution to the after Shock Waves
The conditions of the rupture of the first kind (1.2), which are solved after the shock wave

with respect to the parameters (unknown functions) are written as follows:

-1

y+1 1 2a3 2 YP1
2= p |1t e e =
r [ T R(5),) o
. 2
po=lm-n+20 (k- (%) )| (3.1)

-8, =5 - ()1 ]

at
Here, the continuity of the Euler and Lagrange coordinates must be taken into
consideration.
[r]i = 0,[m]i = 0. 3.2)
Thus, we obtain the initial-boundary (mixed) problem for the functions
r(m,t),p(m,t), p(m,t) of unknown system (1.1) of nonlinear, nonhomogeneous partial
differential equations.
The initial conditions (2.5) determine the initial state of the nonhomogeneous
gravitational gas nucleus and represent the exact solution to the system (1.1) of equations.
Thus, we consider the initial-boundary problem in {2 area:
2 ={te(0,t)me (0,MQ®)}, (3.3)
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where t = 0 is the moment of explosion, t, - the moment of time when the shock wave appears
on the surface of the body (sphere).
The boundary conditions of an unknown boundary m = M (t) are given by (3.1), and at
the center of symmetry
r=0m=0. (3.4)
To find an approximate asymptotic solution to a mixed problem, apply the asymptotic
method of the thin shock layer thar was introduced by Academician G. Chorny for a perfect
non-gravitatingl gas, and was first proposed by T. Chilachava for gravitating gas and is

connected to a small parameter
e=1" (3.5)
To use this method, the magnitude of the explosion energy must be relative to the initial
state parameters of glz order before the shock wave strikes the surface of nucleus.

Assume that asymptotics of L. Sedov's solution to the powerful point explosion [1] is realized
in the basic approximation of the law of motion of medium.
Analysis of the condition of existence of the strong shock wave before appearing on the

surface, and the integral equation (1.9) of energy leads to the condition

E
E==2, E,=0(1). (3.6)

Here, the time necessary for the shock wave to appear on the surface will be of s% order.
Therefore, it is convenient to perform an additional extension of time
T=t/e. (3.7)
The analysis of equation (1.1) of motion and the boundary conditions (3.1), and (3.6),
(3.7) shows that the approximate solution to (1.1) can be sought in the after shock wave by
means of a small parameter (3.5) given by the following singular decomposition:
r = Ry(t) + eH(m,T)+...,R(7) = Ry(7) + €R (D) +..., (3.8)

p =po(m, ) +ep(m,1)+...,p = Po(mT) + p,(m, 7)+....

&
Introducing the singular decomposition (3.8) into the system (1.1) of equations, integral
equation (1.9) and the boundary conditions (3.1), we get the zero approximation of the solution

to the problem:

, Ry (T) (Mo (1) -m)
po(m, 7) = Ry’ (2) (1 = Ro() + 2000

My (1) = 4nR3(7) (5 - 22, (3.9
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Yy ? “hy atem) |7
po(im, ) = py " (m, D[R (T ] " [1+ ]
0

200y = AV L1 _ 2 _7 (13 1-rtm)
ai(m) = 1-r [6 (1 r (m)) 36 (1 r (m)) + 16 ]’
where r = r(m) is defined from equation (2.2)
m = 4mr3 (3 --),
3 4
rt =23 4o,
3 T
1
ref0;1],me [0, g].

And is given by:

16

4 [s
2(A+B)+o— [c—2(A+B)+——
‘/ ° \/9 27 [2(A+B)+g

2

A(m) = J% (1 + \/@)
B(m) = 3\/%(1 — \@)

r(m) =§+

)

(3.10)

In(3.9), Ty = Ty(m) is the time moment, when the shock wave passes the particle through

the Lagrange coordinate m.

The function Ry (7) in (3.9) is the solution to the following Cauchy problem:

n[1 ~ Ro(@IRG R3(®) |5~ "] = Eo, Ro(0) = 0,

o = R~ 3RR,? dRy = [} [,

T

fORO \/(1 —Ro)(4 — 3R0)R03 dRy = llznﬁ‘f,
1 ’125
fo \/(1 - RO)(4 - 3RO)RO3 dRO = - 2 Ty

T, 1s the time moment, where the shock wave appears on the nucleus (star) surface.

fox x (1 —x)(4—3x)xdx =
2{160 x(l—x)(4—3x)F[sin‘l(\/%)|%]—616 x(1—x)(4-—3x)E[sin_l(\/%)ﬁhy(x)}
- 2835,/x(1-x)(4—3%)
y(x) = 1215x° — 3402x* + 2259x3 — 84x2 + 1244x — 1232.

Elliptic integral of the first kind

)

Y dt _ [Sing dx
F(o, k) = 0 Vi-kZsin?t fo (1-x2)(1-k2x2)

Elliptic integral of the second kind
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(p, k) = E(p|k?) = E(sing; k) = fo(le — k2sin20 do,

[ /(T =24 — 30)x dx = 0,28287. (3.14)

7, = 0,28287 / - (3.15)
12E,

Find the asymptotics of the solution to the Cauchy problem (3.11) for:

From (3.12), (3.14) we get

T->0,7->1,,
From (3.11) we get

TR o’ Ry (1) * g = FE, t—0,,

R'o”Ro’*(1) = 22, RoR,*%(1) = /i,

R 3/2 3E, 2 52 ’ 5/2 _ 5 ,3E
fOO /dRO f 0 - / RO/ :E TOT,

Ro(0) = (%)5 /s, T 0,. (3.16)
fort->1,,Ry > 1—

mR'o* (1= Ro) * = = Eq,Ro(T.) = 1,
’ ~ 12E ’ - |12E
Roz(l—Ro)=T°,Ro,/(1—R0 = |2
1 « |12E 2 12E
fRO,/(1 —Ro)dRy = [ —2dr, Z(1-Rp)*? = |- (.~ 1),

1-R¥2 =2 [Z(r, 1),

1

Ry(@) = 1— (2 (r. - D)3, 7 - 7., (3.17)

Conclusion. Thus, non-similar problem of the central explosion of an inhomogeneous
gaseous body (star) bounded by a vacuum that is balanced in its own gravitational field (the
exact solution in the initial shock wave, (2.5)). The asymptotic method of the thin shock layer
is used to solve the problem. The solution to the problem is sought in the after shock wave (the
rupture of surface of the first kind) in a small parameter in the form of a singular asymptotic
decomposition (3.8). The exact basic (zero) approximation of the law of motion of medium and
the thermodynamic parameters is analytically found (3.9). Cauchy's problem for the zero
approximation of the shock wave law is exactly solved analytically in the form of elliptical

integrals of the first and second kind. Relevant asymptotics (3.16), (3.17) are found.
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