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Abstract. This paper discusses the two stages of transformation of the Common-
Kartvelian-speaking people: the first stage was 5000-2500 BC, when the entire populace spoke
the Common Kartvelian language and lived in the South Caucasus; the second stage was 2500—
1000 BC, when the entire populace was divided into three parts: Svan, Colchian-Georgian and
the third part, Pelasgian tribe, was emigrated to various areas of the European continent. For
the first stage, computer simulation is used in the case of variable coefficients of the equation
and corresponding numerical values are obtained. The second stage is described by two

different mathematical models: one part of the Common-Kartvelian-speaking people went to
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Europe and the process of their partial or complete assimilation on the European continent
began. Two other parts of the populaces speaking on the Colchian-Georgian and Svan
languages that arose as a result of the transformation of the Common-Kartvelian-speaking
populace remained in the South Caucasus and Anatolia. To describe the process of interaction
between the Colchian-Georgian and Svan peoples, a two-dimensional non-linear system of
ordinary differential equations with variable coefficients is proposed. A special case of a two-
dimensional system of ordinary differential equations with constant coefficients is considered.
In two cases of certain interdependencies between the constant coefficients of the system, it is
shown that the divergence of an unknown vector function in the physically significant first
quarter of the phase plane changes sign when passing through any segment or half-line one.
Taking into account Bendixson’s criterion, theorems were proved about the variability of the
divergence of a vector field and the existence of closed trajectories in some simply connected
domain that completely contains the starting point lying on one segment or half-line. Thus, it is
shown that there is no assimilation of the Svan populace by the Colchian-Georgian populace
and these two indigenous inhabitants peacefully coexist in the same territory after the

transformation of the Common-Kartvelian-speaking populace.

Keywords: Mathematical modeling, dynamic system, Colchian-Georgian and Svan

populaces, Bendixson's criterion.

Introduction. According to historical and linguistic evidence, the Caucasian tribes,
inhabited a large area and had a significant influence on the political map of the world at the
time. The development of synergetics gave a powerful push using of mathematical and
computer models in social sciences. Mathematical modeling of social processes compared to
modeling in natural science is more original due to the complexity of model justifications [1—
16]. From a historical point of view, we see mathematical modeling as an innovative approach
to describe the area of distribution of the Common-Kartvelian-speaking populace and the
process of further transformation of the language, determining the number of the populace
speaking the corresponding language in each time period. Mathematical modeling of the first

stage is considered in [17].

1. COMPUTER MODELING OF THE FIRST STAGE
Computer modeling for various functions of coefficients gives two qualitatively various
pictures, but both at the end of the first stage (2500 BC) yield approximately identical result,

the Common-Kartvelian-speaking populace in this century became the 3-3.5 million. The
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qualitative difference is that: in the first case, the Common-Kartvelian-speaking populace
always grows from 1 million to 3-3.5 million; in the second case: the Common-Kartvelian-
speaking populace at first it grows to 4—4.5 million (maximum development and economic
situation), then, due to certain reasons (perhaps there was not enough land, food, etc.), it began
to decrease to 3—3.5 million.

Certain historical sources and mathematical logic says that the second case when the
Common-Kartvelian-speaking populace so far as much as possible increased, developed
historically took place, economically amplified, then after achievement of a maximum at this
level found it difficult to remain, slowly owing to various reasons the easing began (an
insufficient area, food problems for such number of the populace, strengthening of the next

people, oppressions with their sides and others).

2. MATHEMATICAL MODELING OF THE SECOND STAGE. RESEARCH
OF A NONLINEAR DYNAMICAL SYSTEM

The second stage of transformation of the Common-Kartvelian-speaking populace is
described by two different mathematical models. The first part of the Common-Kartvelian-
speaking people emigrated to Europe and gradually completely or partially assimilated on the
European continent. An exact analytical solution was found. Cases of complete or partial
Common-Kartvelian-speaking populace assimilation researched.

Two other parts of the populaces speaking on the Colchian-Georgian and Svan languages
that arose as a result of the transformation of the Common-Kartvelian-speaking populace
remained in the South Caucasus and Anatolia.

To describe the process of interaction between the Colchian-Georgian and Svan
populaces, consider a two-dimensional non-linear system of ordinary differential equations

with variable coefficients [18]

du;:t) = a; (Ow(t) — v, OW2(t) + B (OW(®Du(t) — g()w(t) "
O = aOul) - O - BOWOUE
w(ty) = wy, u(ty) = uy, )

t € (ty; tp), w(t),u(t) € C'[ty, t5],
Bi(® >0,y;(t) 2 0,i € 1,2,q() > 0, a; (1), Bi(D), ¥: (1), (V) € C[ty, t,],
w(t) is the number of Colchian-Georgian-speaking populace at t time; u(t) is the number of
the populace speaking on the Svan language at the t time; t; — 2500 BC, t, — 1000 BC,
@, (t), @, (t) — natural demographic factor, respectively, of the Colchian-Georgian and Svan

populaces; y,(t),y,(t) — co-factors of self-limiting growth, respectively, of the Colchian-
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Georgian and Svan populaces; B, (t), B, (t) — co-factors of assimilation of the Svan populace by
the Colchian-Georgian populace; q(t) > 0 — co-factors of unnatural reduction of the Colchian-
Georgian populace due to forced hostilities with neighboring peoples.

Detailed qualitative analysis of the system of ordinary differential equations (1), taking into
account the adequacy and non-triviality of the mathematical model leads to a system of
restrictions on the variable coefficients of the dynamic system

a,(t) >0
1 () =0
) Y2(0) =0
B.(t) >0’
Bo(t) >0
\q(t) >0

t € [ty;t,], (3)

For a qualitative analysis of the dynamical system (1), (2), consider a special case, when
all coefficients of the system of ordinary differential equations are constants.
a,(t) = a; = const, a,(t) = a, = const, y,(t) =y, = const, y,(t) =y, = const, (4)
B, (t) = B, = const, B,(t) = B, = const, q(t) = q = const.
Non-linear system of ordinary differential equations (1), (2) shall be rewritten in vector

form

o =5 (3. 10 = (69). 7 = () 0

where according to the system (1), (5) we have
E(w®,u®) = aaw(®) — y,w?(©) + frw(©u(t) — qw(b), (6)
F(w(®),u(®) = au(t) — y,u? () — Bw(@®u(®).

We have two different cases:

a;+a,—q>0

1. {1 z . 7
By —2y, <0 M
a;+a,—q<0

2. {1 z . 8
p1—2y,>0 ®)

Consider the first case (7).

Taking into account (6), the divergence E (u(t), W(t)) of the vector field F will take the

form
divF = E (u®,w®) = a; +az —q — y1 + BIwW() + (B — 2y)u(t) )
and vanishes on the straight line of the phase plane of the solutions
__ P12y, a+ax—q
w(t) = 2y1+B2 u(®) + 2y1+B2 (10)
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A line (10) in the first quarter of the phase plane is a segment connecting the points

M, (o, m) and N (“”“Z‘q , o) (Fig. 1).

2y1+B2 —B1+2y2

W(t) A

N
vwl)
N
0 o u(t)
Fig. 1
Now consider the case when the initial conditions (2) satisfy the conditions
- —2Y2 ajtaz—q
0<u < &fedy, 5o, | ateq 11
1 —Brit2yy’ LT 2y4B, 1 2y1+B2 atn

The following theorem can now be stated.

Theorem 1. The non-linear system of ordinary differential equations (5), (6) when the
(7) is fair and executed (11), in some simply connected domain D < (0, u(t), w(t)) the first
quarter of the phase plane (0, u(t), w(t)) has the solution in the form of the closed trajectory

which completely lies in this domain.

Proof. Let’s show that the divergence of the vector field F according to (9) vanishes on
the line
a; +a; —q— 2yy + B)w(®) + (B — 2y)u(t) =0 (12)
phase plane of the solutions (0, u(t), w(t)).

Thus, the vector field divergence in the first quarter with physical content is equal to zero

on the a segment connecting the points M, (0, w) and N (w, 0).
2y1+B2 —B1+2y2

Suppose the initial conditions (2) satisfy (11).

Fy

It is clear, that E (u(t), W(t)) divergence (9) of the vector field F ( F
2

), in some simply

connected domain D < (0, u(t), w(t)), containing the M (u,, w;) point lying on the line (10),
changes its sign.
Then by Bendixson’s theorem, there is a closed integral trajectory of the non-linear

system of ordinary differential equations (5)—(7), (11), which lies entirely in this domain D C

(0,u(t),w(t)) [19].
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Theorem 1 is proved.

Consider the second case (8).

In this case, we assume that the constant coefficients (5), (6) satisfy (8).

The divergence of the vector field E (u(t), w(t)) is zero on the line (10) of the phase plane

(0, u(t),w(t)) of solutions.

In the case (8) a line (10) passes through the points M, (O, azl;‘:zﬁ_q) and N, (algizz;q , 0).
1 2 ~P1 2

In this case, the first quarter of the phase plane of solutions belongs only to the part of the line

(10) with the left end at the point N; (Fig. 2).

W(t) A
p W‘l)
ol N, u(®)
»’/
e MZ
Fig. 2
In the case (8), we will select the initial conditions (2) in such a way that they satisty the
condition

u, a+a—q > 0,w, = ﬁ1—2V2u a+a—q (13)

~B1+272 T 2pHtBr b 2By

Similarly, the following theorem 2 is proved.

Theorem 2. The non-linear system of ordinary differential equations (5), (6) when the
(8) is fair and executed (13), in some simply connected domain B < (0, u(t), w(t)) the first
quarter of the phase plane (0, u(t), w(t)) has the solution in the form of the closed trajectory

which completely lies in this domain.

Proof. Let’s show that the divergence of the vector field F according to (9) vanishes on
the line (10) phase plane of the solutions (0, u(t), w(t)).

In this case, the first quarter of the phase plane of solutions belongs only to the part of the
line (10) with the left end at the point Nj;.

Suppose the initial conditions (2) satisfy (13).
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. . > (F\ . .
It is clear, that E (u(t), W(t)) divergence (9) of the vector field F ( Fl)’ in some simply
2

connected domain B c (0, u(t), w(t)), containing the M (u,, w;) point lying on the line (10),
changes its sign.

Then by Bendixson’s theorem, there is a closed integral trajectory of the non-linear
system of ordinary differential equations (5), (6), (8), (13) which lies entirely in this domain
B c (0,u(t),w(t)) [19].

Theorem 2 is proved.

Conclusion. Computer modeling of the first stage for various functions of coefficients
gives two qualitatively various pictures, but both at the end of the first stage (2500 BC) yield
approximately identical result, the Common-Kartvelian-speaking populace in this century
became the 3-3.5 million. The qualitative difference is that: in the first case, the Common-
Kartvelian-speaking populace always grows from 1 million to 3-3.5 million; in the second case:
the Common-Kartvelian-speaking populace at first it grows to 4—4.5 million (maximum
development and economic situation), then, due to certain reasons (perhaps there was not
enough land, food, etc.), it began to decrease to 3—3.5 million.

The second stage of transformation of the Common-Kartvelian-speaking populace is
described by two different mathematical models. The first part of the Common-Kartvelian-
speaking populace emigrated to Europe and gradually completely or partially assimilated on
the European continent. An exact analytical solution was found. Cases of complete or partial
Common-Kartvelian-speaking populace assimilation researched.

Two other parts of the populaces speaking on the Colchian-Georgian and Svan languages
that arose as a result of the transformation of the Common-Kartvelian-speaking populace
remained in the South Caucasus and Anatolia. To describe the process of interaction between
the Colchian-Georgian and Svan populaces, a two-dimensional non-linear system of ordinary
differential equations with variable coefficients is proposed. A special case of a two-
dimensional dynamic system with constant coefficients is considered. In two cases of certain
interdependencies between the constant coefficients of the system, it is shown that the
divergence of an unknown vector function in the physically significant first quarter of the phase
plane changes sign when passing through any segment or half-line one. Taking into account
Bendixson’s criterion, theorems were proved about the variability of the divergence of a vector
field and the existence of closed trajectories in some simply connected domain that completely
contains the starting point lying on one segment or half-line. Thus, it is shown that there is no

assimilation of the Svan populace by the Colchian-Georgian populace and these two populaces
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peacefully coexist in the same territory after the transformation of the Common-Kartvelian-

speaking populace.
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gBs3o  — d3.f. 2500-1000 §F. 9gmeg 9GHs30L  ©@OML  3OHMEMIIONIIMOO
3lobEgmd0sb BsdmMmygoe0ds bsd @M. gbgbos: 3560, 3NEWbYO-JsHNWwo s
39WslyM0. gl M39BLs369w0  gosalivbars 93MM30L  3MmbEBH0696GHOL  Lbgsalibgs
6930mb6d0. 306390 9E930LmM30L 330993 JMHIC0 BMEILOMGOS 25dM0Ygbgds
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30bmE-JoOmme s 1356MO 9bgdBg FMEs356539 FMbobgmds ©I330MS
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